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Abstract. The local minima of the §herrington-Kirkpatrick model are studied numerically 
by introducing a heuristic method. Our approach naturally leads us to their ultrametricity. 
For finite systems some observations on this method suggest the relation d ,  - d,  - a 
among three distances of three low-energy local minima d ,  3 d ,  3 d ,  . Overlap functions 
are studied numerically, giving consistent results with the above relation and the results 
of the replica symmetry breaking theory. 

1. Introduction 

One of the main interests in the spin-glass phase is in the expectation that it can be a 
disordered system of a new type of magnetic order which cannot be reduced to ordinary 
ferromagnetism. In particular, many studies suggest that it is characterised primarily 
by a large number of deep free-energy valleys. Among them, the replica symmetry 
breaking solution [ l ]  of the Sherrington-Kirkpatrick (SK)  model [2] presents us with 
precise ideas on this problem [3]. In addition to ordinary thermodynamics, this solution 
presents us with two novel aspects of the spin-glass phase, which are well described 
by a new type of order parameter called the overlap function [4]. The first is that 
natural distances between these valleys are sample dependent even in the thermo- 
dynamic limit. The second is that these valleys are organised in a hierarchy which is 
characterised by an ultrametric structure. That is, the three distances of any set of 
three valleys form a triangle which is either equilateral or isosceles with the third edge 
shortest. Some numerical efforts to check these results have been presented by several 
authors [5-71. It has also been suggested that these properties are universal [SI. In 
this paper, in order to add another point of view which will hopefully clarify the origin 
of this structure, we shall introduce a heuristic method to obtain a large number of 
local minima of the SK model. The point of this method is based on the idea that 
P (  h ) ,  the distribution of the effective field over the system, reflects the organisation 
of the low-energy local minima ( T  = 0 valleys). This idea was inspired by the study 
of a simple infinite-ranged model [ 9 ] .  In this model, by the effect of inter-subsystem 
frustrations, low-energy local minima are made up from independent rigid clusters of 
widely differing sizes. Since interactions are infinite ranged, each site of a given cluster 
feels the effective field proportional to the size of this cluster. In § 2, which is primarily 
a rCsumC of the previous paper [lo], we study the application of this observation to 
the SK model and discuss the main features of the method introduced. We shall show 
that ultrametricity is a natural conclusion from our point of view. In 0 3, in contrast 
to § 2, we shall regard our method simply as a way of obtaining a large number of 
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local minima and we shall then study the overlap functions constructed from them. 
Section 4 is devoted to some discussions, especially on the short-range model. 

2. A heuristic method 

The Ising SK model is the infinite-ranged random Ising model, which is described by 

H = -c J..g.g. ?I I I (1) 

where JI,  are quenched random interactions which obey a Gaussian distribution with 
width N-’” for a system of N sites. We consider the temperature T = 0. At a local 
minimum, spins cr! should satisfy the stability conditions 

aihi > 0 ( 2 )  

for all i, where hi is the effective field on the site i. Starting from random configurations 
these states are easily obtained by iterations of spin flip, which always makes the energy 
lower (the one-spin-flip method). The properties of overlap functions below Tc = 1 
are characterised by the states CY with E, - Eo - O( l) ,  where E, is the energy of the 
state CY and Eo is the energy of the lowest state. It is rather difficult to obtain these 
low-energy local minima by this method, especially for large N. To introduce our 
method we first study the distribution of the effective field over the system which is 
defined by 

1 
N j = l  

P ( h ) = -  c S ( h i - h ) .  (4) 

At an early stage in the study of the SK model, Anderson pointed out that P ( h )  is 
proportional to I h 1 for small I h I [ 1 11. This property was also affirmed numerically [ 121. 
Since this property is crucial in our approach, we reproduce the argument presented 
by him. For a given local minimum it is suggested that we consider the cluster of sites 
with the effective field smaller than h (0 < h << l) ,  which we denote by Sh = {il lhil < h} .  
The number of sites which belong to Sh is given by n = i sh1  = 2N s,” P ( h )  dh. The 
whole system is divided into two regions, Sh and s,, where $, is the complement of 
sh. Let us introduce two effective fields given by 

If i E Sh,  h: is the effective field produced by Sh itself, and estimated to be (n/N)’”. 
Then, by demanding the consistency h - h : ,  we reach the relation P ( h ) x l h l .  This 
argument further implies that h: - h, since h, = h f + h: - h. This means that the effective 
field on Sh produced by s h  is rather small, despite the large number of spins in s h .  

This situation is very similar to the model with inter-subsystem frustration [9]. Hence 
it is natural to study cooperative spin flips in SI, to search other low-energy local 
minima. Let us consider what happens to this state CY if we set a, + -w, for all i E s h .  

It is easily shown that the stability conditions are violated by this operation. The 
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degree of this violation can be estimated in the following way. With this operation, 
C' = h,a, is replaced by 

c; = (h ;  - h,")a, (7) 

for all j €  s h .  We see that C; is either positive or negative with probability if we 
notice ( ~ h ~ ~ ) s - ( ~ k ~ ~ ) s ,  where ( )s means the site average over Sh.  For j~ SA, we have 
Ci = (h:  - h:)a,, which remains positive for the site with h p ,  >> h. We then expect that 
if we apply the one-spin-flip method to this state we will have another local minimum, 
p, in which spin flips take place for the sites with Ih,l G h. We introduce Rh = 
{iiaFaf = -I}. Figures 1 and 2 show the typical numerical results. In figure 1, with 
h = O.ln ( n  = 1,2, . . . ,20),  the relation between IShl and lRhl is presented for five' 
starting states of a sample. In figure 2, the relation between IShl and jRh n shl are 
presented for the same sequences. We should note that IRA n shl is much smaller than 
lRhl, and lRhl is nearly equal to /Sh/ /2  at lSh1-20, 50 and 100 for some sequences. 
These results imply that, at these points, about half of the spins remain to be flipped 
with little change in sh. These numbers presumably reflect the structure of the 
configuration space. Unfortunately we have no argument to affirm that PE = E, - Ep - 
O(1). The computer calculations show that AE depends upon many factors, e.g. 
sample, starting state and h. However, we usually obtained states with energy nearly 
equal to or lower than the energy of original starting states for small h. This point 
depends upon the energy of the starting states and will be discussed in the next section. 

We can regard our method just as a way of obtaining a large number of local 
minima. We shall take this point of view in the next section. Here we want to point 

r 

0 50 100 
1 %  

Figure 1. Some examples of the relation between IRh/ and IShi. This picture is depicted 
for one sample of N = 200 and five starting states. The points on each zigzag line represent 
the relation for one starting state with h = O . l n  ( n  = 1,. , . , 20). The details 
around lRhl - 0  are omitted to avoid complexity. The broken line is lRhl = / S h 1 / 2 .  
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100 Ish1 0 50 

Figure 2. The relations between lRhl and IR, n shl for the same sequences of figure 1. 
Some isolated short lines with lR, n ghl S 4, one of which is shown for b, are omitted for 
c, d and e. 

out that figures 1 and 2 give a fruitful insight into the structure of local minima. Let 
us consider the relation between R,, and Rhy which, from CY, are obtained by our 
method with h,  >> h,. We consider the maximal situation I Rhl - IShl/2, which means 
that a site in Sh belongs to Rh with probability i. The relation between Rhy and R,, 
has any possibility among 0 C lRhy n RhP 1 S 1 Rho I. Here we suggest that the spin flips 
in S,, and S,, have no correlation, since the set cf interactions Ju with i E S, and 
j E SI,, which control the spin flips in Sh,  has different random variables for each h. 
With this assumption a site in R,,, which belongs to Shy, also belongs to Rhy with 
probability 4. We then have I R,, n Rhyl = 41 R,,I -I- O( 1 R,, 1 1 ’ 2 )  for I Rhyl >> I R,,I >> 1. The 
IRRP1”2 correction is due to the central limit theorem. The reason why we present 
these arguments is that the above relation is in agreement with the ultrametricity of 
local minima. That is, by using the definition of distance, d,, = I R,,I, d,, = I Rhy and 
d,, = lRh,I +lRhyI-21Rh, n Rhyl, we have d,, = dpy> d,, for large IR,,l, For the finite 
system these arguments imply that, when three distances are arranged in the order 
d,  2 d2 2 d, ~ we expect the relation d,  - d, - a. If the picture presented in this section 
is correct, this relation will be observed in the overlap functions of the finite system. 
This point will be studied in the next section. 

3. Numerical results 

This section is devoted to describing the results obtained by the method introduced 
in $2 .  As promised there, we shall regard our method as just a way of searching 
effectively for local minima. We first explain the details of our calculations for N = 100, 
200 and then study the overlap functions constructed from the obtained states. In the 
application of our method it is necessary to avoid the artificial correlations among the 
resulted states. Thus we chose ten low-energy states obtained from K random configur- 
ation by the one-spin-flip method ( K  = 100, 2000 for N = 100, 200) and then apply 
our method to each of them with h = 0.1 n ( n  = 1,2 , .  . . ,20). The number ten is the 
order of the number of the states obtained which satisfy the condition E, - E o -  O(1). 
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We take 21 and 10 samples for both N = 100, 200. To see how this method works, we 
also studied a few N = 100 samples by the one-spin-flip method with many initial 
random configurations. It is worthwhile to mention that, at least for N = 100, the 
one-spin-flip method gives the lowest state many times, yet slightly higher states with 
E, - E,  - 0(1) appear few times in comparison with our method. For N = 200, the 
lowest state rarely exists in the ten starting states and our method usually finds lower 
states close to the original starting state. In achieving a local minimum from the 
configuration obtained by ai + -U( for i E SA, we tried several options of the one-spin-flip 
method which have a different order of spin flips. For N = 200, four options seem to 
be sufficient to obtain the possible states with E, - Eo - O( 1). The lowest energy (Eo)/  N 
was found to be -0.7407 for N = 100 and -0.7440 for N = 200, where ( ) means the 
sample average. The number nl of the obtained local minima with E,  - E,  s 1 strongly 
depends upon samples. We found 1 S n, S 14 with ( n l )  = 7.3 for N = 100 and 7 6 n, 6 40 
with ( n , )  = 23 for N = 200. The value for N = 100 seems smaller than the value in [ 121. 
These numbers, however, only give us a rough idea of n, ,  and will be modified a little 
if we add other samples. 

Having local minima for each sample, we can construct the overlap functions which 
are defined by 

where P, = exp(-pE,)/Z, Z = Z, exp(-pE,) and p = T-.’. Instead of the overlap 
qop = X I  aHuf/ N, we use the distance de, which is the number of spin flips necessary 
to reach p from a. They have the relation d,, = N (  1 - qap)/2. Since the number in 
our sample is not large, we shall study d averaged with overlap functions instead of 
P 2 ( d )  and P , ( d , ,  d 2 ,  d 3 )  themselves. We first study the average d defined by 

N / 2  
d =  d P 2 ( d ) .  

d = O  

In figure 3, the temperature dependence of (d )  is presented. We study the region 
greater than 0.1, since the smallest value of E ,  - Eo is of order 0.1 for almost all of 
the samples studied. For T S 1, the relation 2(8)/ N = T is expected, since the suscepti- 
bility x = p (  1 - ( 1 5 ) )  is shown to be 1 by the argument of the replica theory [l]. Figure 
3 shows that 2 ( d ) / N  has a tendency to become proportional to T for large N. The 
deviation from T for T b 0.3 implies that, because of the absence of thermal fluctuations, 
local minima become poor approximations of free-energy valleys. We also study the 
root mean square AdN = ((6’) - (d)2) ’ /2 ,  which characterises the sample dependence 
of d. Figure 4 shows the temperature dependence of AdN.  For T < 0.15, Ad200 strongly 
decreases as temperature is lowered. This behaviour implies that our ensemble does 
not have a large enough number of samples which have local minima with E, - E o 6  0.15 
and d,,-  N. We are especially interested in the N dependence of AdN.  In figure 5 ,  
the ratio r = Ad200/Ad,oo is plotted against T. In the region 0.25 < T < 0.35, r is equal 
to 1.95 = 2.0, which implies that A d N  is proportional to N. This is consistent with the 
result ( P 2 ( d ) P 2 ( d ’ ) )  # ( P 2 ( d ) ) ( P 2 ( d ’ ) )  ofthe replica theory [3]. It is worthwhile pointing 
out the reason for the relation AdN a N in terms of the original data. In each sample 
d is not determined by the average of many distances but by a few typical distances 
which are quite different from sample to sample. This difference is of order N, which 
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I / 

1 

Figure 3. The temperature dependence of 2 ( d ) / N  for N =  100 and 200. At T=0.3, for 
example, ( d )  is 8.94 for N = 100 and 24.18 for N = 200. They provide us with an idea for 
the typical distances at T=O.3. The broken line is 2 ( d ) / N  = T. 
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Figure 4. The temperature dependence of A d N .  
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T 

Figure 5. The temperature dependence of r = Ad200/Ad,oo. The broken line is r = 2. 

leads us to the relation A d N  N. Now let us study P3( d ,  , d 2 ,  d3) .  We fix the temperature 
at 0.3, where A d N  shows a reasonable N dependence. As in the case of P 2 ( d ) ,  we 
introduce the averages of di determined by P3(dl ,  d2 ,  d3) .  We restrict ourselves to the 
region d ,  3 d2 3 d,, since this function is symmetric with the permutation of di .  Under 
this condition, we are first of all interested in the d ,  dependence of the difference 
d ,  - d 2 .  Thus we introduce the following averages: 

6 + ( d 3 ) = C ’  ( d 1 - c d 2 ) P 3 ( d 1 ,  d 2 ,  d 3 ) /  W ( d 3 )  

6 - ( d 3 ) = C ’  ( d 1 - d 2 ) P 3 ( d 1 ,  d 2 ,  d 3 ) /  W ( d 3 )  

for non-zero W ( d 3 ) ,  where W ( d , )  is defined by 

and 2‘ means summation under the conditions N / 2  3 d ,  3 d2 3 d3 with fixed d3 .  We 
also introduce the average of d3 given by 

NI2 

Z3= 1 d3 W ( d , ) .  (14) 
d3=0 

6*( 1) is always zero, since the distance one is impossible. We are especially interested 
in the following two questions in terms of 6+(d3)  and 6,. (i) Is 6- (d3)  proportional 
to &&? (i i)  Are d3 and 6 + ( d 3 )  proportional to N ?  If these two points are confirmed, 
we expect the ultrametricity of local minima in the thermodynamic limit. Figure 6 
shows the d3 dependence of ( z - ( d 3 ) ) ,  which shows the expected behaviour for small 
d 3 .  Deviations from v‘?& take place for large d3 .  We should notice here that at T = 0.3 
the average (6)  is 8.94 - 9 for N = 100 and 24.18 - 24 for N = 200, as was presented 
in figure 3. This means that P3(dl ,  d 2 ,  d,) for d,  > (6) is quite small, which may cause 
a large deviation of ( 6 - ( d 3 ) )  from the &&behaviour. Thus we should restrict ourselves 
to the region d3 6 ( 6 )  to study the averages introduced above. In this region a-( d,) 
has little sample dependence except for small fluctuations around a. On the other 
hand, d+(d3)  and W ( d , )  show strong sample dependences which directly reflect the 
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N.200 
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d3 
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Figure 6. The d, dependence of ( h ( d , ) )  at T = 0.3. (d )  is marked by arrows for each N. 
The broken curve is a. The broken line is d,, which is the upper bound of (d-(d,)) 
imposed by the triangle inequality. 

dependence of d: Figure 7 shows the d,  dependence of ( c f , (d3 ) ) .  If the system has a 
hierarchy of distances, d+( d3)  will have step-like increasing points as d ,  increases, at 
which d3 becomes equal to one of them. Even after the sample average, (d+(d3))  for 
N = 200 shows such behaviour at d3 - 10, while it is not clear for N = 100. When d3 
becomes the largest distance of the hierarchy, (d+(d3))  ceases to increase. This takes 
place at d 3 - ( d ) ,  where W ( d 3 )  is quite small. W ( d , )  takes the largest value of order 
0.1 at d3=0.  As d,  increases, W ( d , )  for N = 100 decreases more rapidly than for 

Figure 7. The d, dependence of ( d + ( d 3 ) )  at T =  0.3. (d )  is marked by arrows for each N. 
The circles on the vertical axis indicate the values (d+(O)) which are 15.04 for N = 100 and 
40.79 for N = 200. The broken line is 2 d 3 ,  which is the lower bound of (d+(da)). 
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N = 200. This point is expressed by the averages given by 

and (&). At T = 0.3 we found (6-) = 0.4967, (d3) = 1.2057 and (6+) =_18.102 for N = 100, 
and 1.7191, 5.3170, 55.0867 for N=200.  The N dependence of (d , )  is related to the 
dependence of ( d ) ,  if there is the typical largest distance which characterises them for 
each sample, This implies the relation (6+)-2(6), which is well satisfied for both 
system sizes. Unfortunately, (6;) does not seem to be proportional to N. The system 
size N = 100 may be still too small to see the hierarchical structure at T = 0.3, since 
the averaged distance (6) is quite small (-9). 

4. Discussion 

In this section we want to present some discussions on the results and some comments 
on the short-range model. Our numerical results are qualitatively in good agreement 
with the results obtained by the replica symmetry breaking theory. In addition to this, 
our approach leads us to a natural explanation of the ultrametricity of local minima, 
and also implies the relation d ,  - d2 - && for three distances d ,  z= d,  5 d 3 .  This relation 
was not recognised by the N = CO mean-field theory. In 0 3, we checked this relation 
by a numerical study, which strongly supports the descriptions of local minima 
presented in P 2. It will be interesting to see if this relation works in studying the 
fluctuations around the Parisi solution. 

We started our study with the observation of P ( h ) ,  which led us to a heuristic 
method of obtaining many low-energy local minima. Although our method is sugges- 
tive, we have no idea about the mechanism which chooses a few Rh from many possible 
subgroups of S, .  This aspect may be closely related to the nature of the glassy state, 
which is definitely distinguished from the paramagnetic state. By the observation in 
P 2, ultrametricity is reduced to the following statements. (i)  There is a sequence of 
clusters of spins S ,  c S2=  . . . c SL for any low-energy local minimum and, for each 
SI, another local minimum is obtained by simultaneously flipping half of the spins R, 
in SI. (ii) The spin flips in each S, are independent of i. In general, SJ( j  < i) will be 
changed with constraint SI c SI under the spin flips in S, .  This picture is in agreement 
with the stochastic branching process derived from the Parisi solution [8]. A very 
interesting question is whether or not ultrametricity is realised in other random systems, 
in particular in the short-range model. The numerical study of the three-dimensional 
i J  model has been already performed [8]. We here tentatively propose one possibility 
which satisfies the above two conditions. First of all it should be noticed that, in the 
short-range model, large clusters whose simultaneous spin flips cost energy of order 
one should be in unusual geometrical concepts, since the simultaneous flips of spins 
in a cube or a sphere will cost energy proportional to its surface when the system is 
renormalised into a low temperature region [13, 141. Let us imagine two spin clusters, 
S ,  and S2 with S ,  c Sz, for a given local minimum of the short-range model. In figure 
8 these clusters are represented by the regions enclosed by broken lines. In each SI, 
we introduce another region RI enclosed by zigzag lines (boundary) in which 
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Figure 8. The diagram which explains the possible ultrametricity of the short-range model. 
The small square enclosed by the broken line is S, . The large square is S,. The relation 
S, c S, is shown in the figure on the right. R, is enclosed by a zigzag line. 

simultaneous spin flips take place to another local minimum of nearly the same energy. 
We should note here that, if the surface of RI is random enough, the existence of such 
clusters will not contradict the fact that the system is renormalised into a low- 
temperature region. In other words, the system can be solid with the simultaneous 
spin flips in almost all regions, while it is soft with the simultaneous spin flips in a 
few privileged regions. Then (i) is satisfied if IR,l = IS,l/2, and (ii) is satisfied if two 
zigzag lines have no correlation. RI in figure 8 is obtained by coin tosses on the square 
lattice on S I ,  with suitable rearrangements to ensure the connectivity of R, and RI. In 
this suggestion, however, we have introduced a serious assumption that the system is 
not homogeneous but has certain regions in which simultaneous spin flips take place 
with an energy cost of order one. In this respect we remember that, by the arguments 
of the renormalisation group transformation, some authors suggest that the short-range 
model is quite different from the SK model in the properties of overlap functions 
[15, 161. However, it is not clear if the usual method in statistical physics works well 
enough to study such a few privileged clusters of unusual shape. If we stick to the 
idea presented in this paper, the study of the model with high enough dimension will 
be illuminating since, in high connectivity, sites of small effective field have a tendency 
to form a cluster. 
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